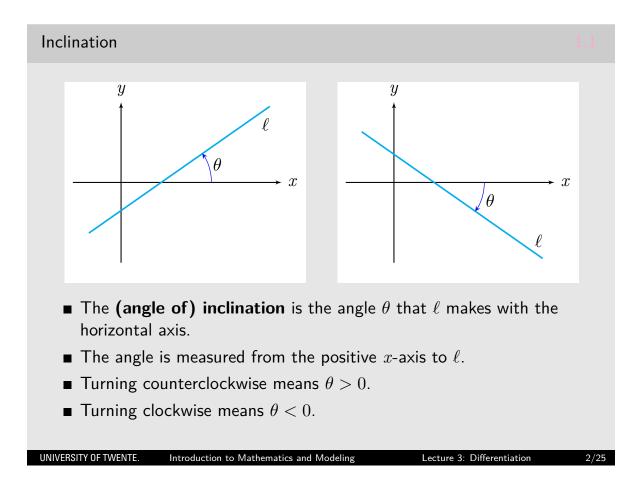
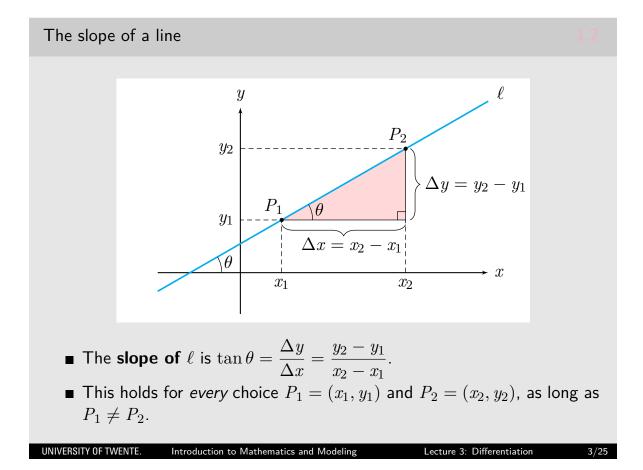
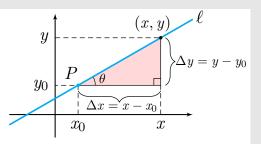


Introduction to Mathematics and Modeling





Equation of a line through a point with given slope

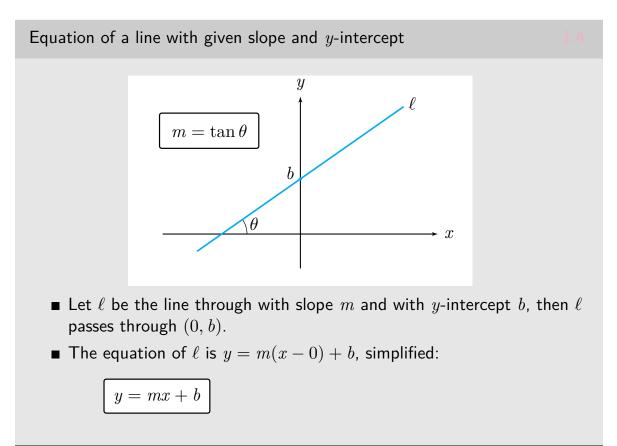


■ Let ℓ be the line through $P = (x_0, y_0)$ with slope m, then for every point $(x, y) \neq P$ on ℓ we have

$$m = \frac{y - y_0}{x - x_0} \qquad \qquad) \times (x - x_0) \\ y - y_0 = m(x - x_0) \\ y = m(x - x_0) + y_0. \qquad) + y_0$$

• The equation of the line through P and with slope m is

$$y = m(x - x_0) + y_0$$
UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling



Lecture 3: Differentiation

The derivative of a function

We define the **derivative of** f at x_0 as

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

The number $f'(x_0)$ can be interpreted as:

- the slope of the graph of y = f(x) at the point $(x_0, f(x_0))$;
- the slope of the tangent line to the graph of y = f(x) at the point $(x_0, f(x_0))$;
- the rate of change of f(x) at the point x_0 .

Image: Second second

Example							
Example							
Calculate the derivative of $f(x) = x^2$ at 1 with the definition.							
h	1+h	f(1)	$\int f(1+h)$	f(1+h)-f(1)	$\frac{f(1\!+\!h)\!-\!f(1)}{h}$		
1	2	1	4	3	3		
0.5	1.5	1	2.25	1.25	2.5		
0.25	1.25	1	1.5625	0.5625	2.25		
0.01	1.01	1	1.0201	0.0201	2.01		
0.001	1.001	1	1.002001	0.002001	2.001		
This suggests: when h approaches 0, then $\displaystyle \frac{f(1+h)-f(1)}{h}$ approaches 2.							
UNIVERSITY OF	TWENTE.	Introductio	on to Mathematics a	nd Modeling L	Lecture 3: Differentiation 7/25		

Example

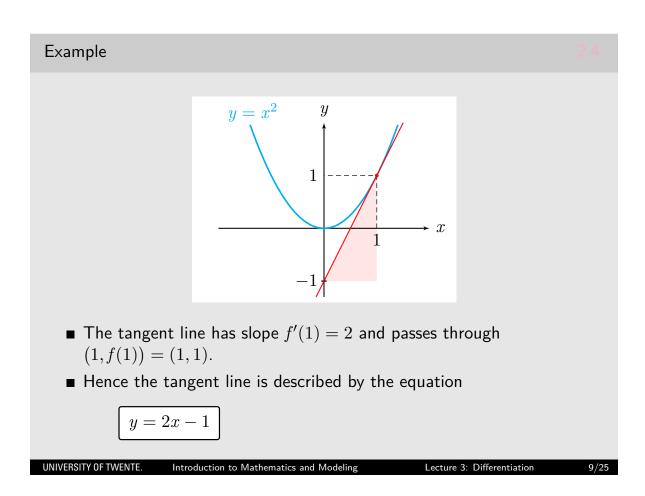
Example

UNIVERSITY OF TWENTE.

Calculate the derivative of $f(x) = x^2$ at 1 with the definition.

Introduction to Mathematics and Modeling

$$\frac{f(1+h) - f(1)}{h} =$$



8/25

Lecture 3: Differentiation

Example

Example

Calculate the derivative of $f(x) = x^2$ at a with the definition.

$$\frac{f(a+h) - f(a)}{h} =$$

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling

Lecture 3: Differentiation

Example 2.6	
Example Calculate the derivative of $f(x) = \sqrt{x}$ at a with the definition.	
$\frac{f(a+h) - f(a)}{h} =$	

Example

Example

Calculate the derivative of $f(x) = \frac{1}{x}$ at $a \neq 0$ with the definition.

$$\frac{f(a+h) - f(a)}{h} =$$

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling

The derivative as a function

Definition

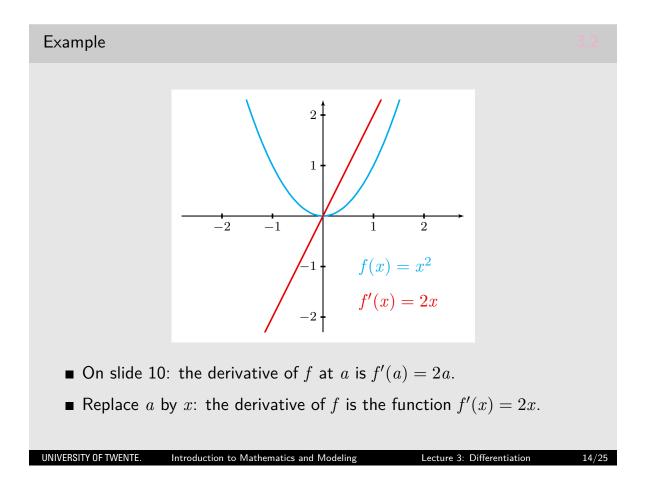
The derivative of the function f is the function f' whose value at x is

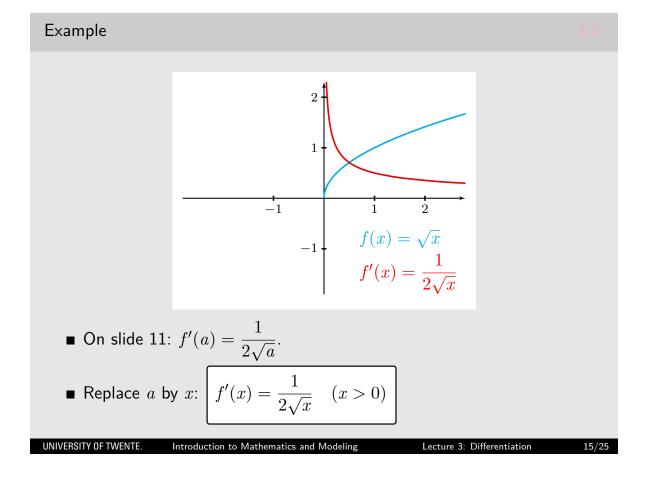
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

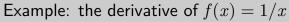
- The function f is **differentiable at** x if f'(x) exists.
- The process of calculating f' is called **differentiation**.
- Alternative notations for the derivative are

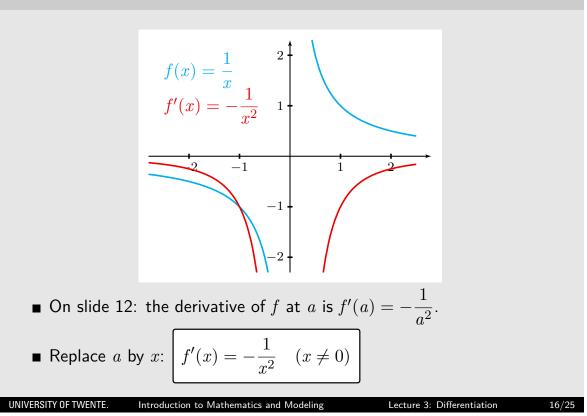
$$rac{df}{dx}$$
 and $rac{d}{dx}f(x).$

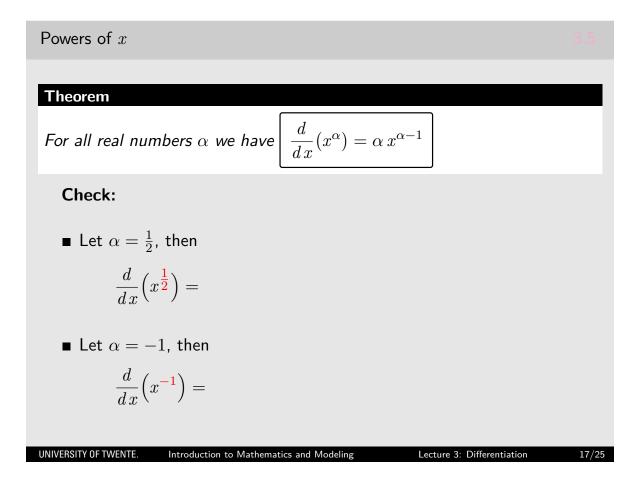
Lecture 3: Differentiation





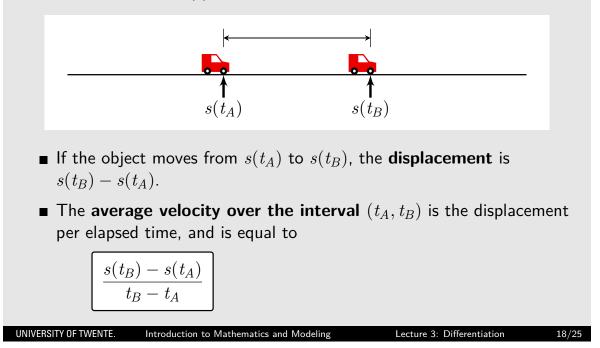


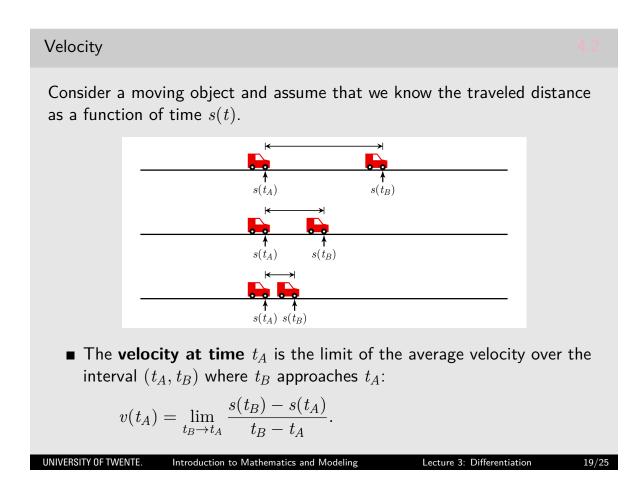




Average velocity

Consider a moving object and assume that we know the traveled distance as a function of time s(t).





Velocity

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}.$$

Define $h = t_B - t_A$, then

- $t_B = t_A + h$ and
- " $t_B \rightarrow t_A$ " is equivalent to " $h \rightarrow 0$ ".

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}$$

= $\lim_{h \to 0} \frac{s(t_A + h) - s(t_A)}{h} = s'(t_A).$

Introduction to Mathematics and Modeling

Velocity is the derivative of displacement

UNIVERSITY OF TWENTE.

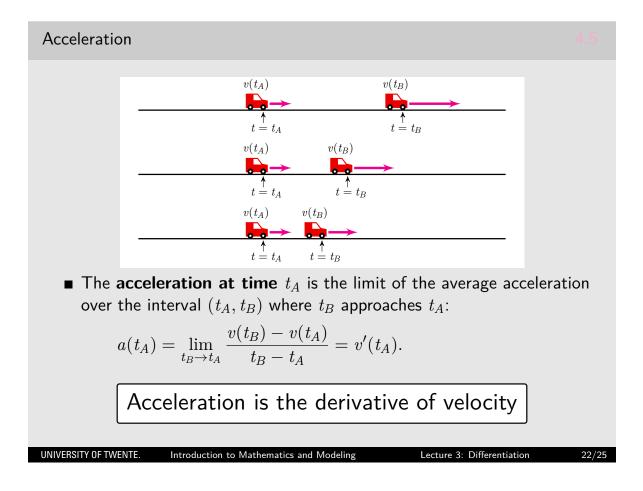
Average acceleration Consider a moving object and assume that we know the velocity as a function of time v(t). $v(t_A) \qquad v(t_B)$ $t = t_A \qquad t = t_B$ In the average acceleration over the interval (t_A, t_B) is the change in velocity per elapsed time, and is equal to

$$\frac{v(t_B) - v(t_A)}{t_B - t_A}$$

UNIVERSITY OF TWENTE.

Lecture 3: Differentiation

21/25



Higher order derivatives **Definition** Let n be a non-negative integer. The n-th derivative of f is denoted as $f^{(n)}$ or $\frac{d^n f}{dx^n}$, and is defined as $f^{(n)}$ or $\frac{d^n f}{dx^n}$, and is defined as $f^{(n)}(x) = \begin{cases} f(x) & \text{if } n = 0, \\ f'(x) & \text{if } n = 1, \\ \frac{d}{dx} \left(f^{(n-1)}(x) \right) & \text{otherwise.} \end{cases}$ In the second derivative is denoted as f'' and not as $f^{(2)}$. Acceleration is the second derivative of displacement: a(t) = s''(t).

